Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F1(X) -> F1(g1(X))
F1(X) -> G1(X)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, Z)
G1(s1(X)) -> G1(X)

The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F1(X) -> F1(g1(X))
F1(X) -> G1(X)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, Z)
G1(s1(X)) -> G1(X)

The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, Z)

The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, Z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(SEL2(x1, x2)) = x1 + 2·x1·x2   
POL(cons2(x1, x2)) = x2   
POL(s1(x1)) = 2 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G1(s1(X)) -> G1(X)

The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


G1(s1(X)) -> G1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(G1(x1)) = 2·x1   
POL(s1(x1)) = 2 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

F1(X) -> F1(g1(X))

The TRS R consists of the following rules:

f1(X) -> cons2(X, f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.